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Abstract

Explicit supersymmetry breaking is studied in higher dimensional theories by having
boundaries respect only a subgroup of the bulk symmetry. If the boundary symmetry is
the maximal subgroup allowed by the boundary conditions imposed on the fields, then the
symmetry can be consistently gauged; otherwise gauging leads to an inconsistent theory. In
a warped fifth dimension, an explicit breaking of all bulk supersymmetries by the boundaries
is found to be inconsistent with gauging; unlike the case of flat 5D, complete supersymmetry
breaking by boundary conditions is not consistent with supergravity. Despite this result,
the low energy effective theory resulting from boundary supersymmetry breaking becomes
consistent in the limit where gravity decouples, and such models are explored in the hope
that some way of successfully incorporating gravity can be found. A warped constrained
standard model leads to a theory with one Higgs boson with mass expected close to the
experimental limit. A unified theory in a warped fifth dimension is studied with boundary
breaking of both SU(5) gauge symmetry and supersymmetry. The usual supersymmetric
prediction for gauge coupling unification holds even though the TeV spectrum is quite unlike
the MSSM. Such a theory may unify matter and Higgs in the same SU(5) hypermultiplet.

http://arXiv.org/abs/hep-th/0302192v2


1 Introduction

A light Higgs boson, suggested by precision electroweak data, together with a heavy top quark,

has direct and consequential implications. Virtual top quarks necessarily induce a large quadratic

divergence to the Higgs mass parameter, hence a light Higgs boson is expected only if this is

canceled by additional radiative contributions from new physics at energy scales not far above

the top quark mass. The most obvious origin for this cancellation is weak scale supersymmetry,

and the case for this is greatly strengthened by the successful prediction from gauge coupling

unification. The experimental implications for such theories have focused almost exclusively on

theories which are four dimensional at the TeV scale — especially the minimal supersymmetric

standard model (MSSM). However, higher dimensional supersymmetric theories can also tame the

divergences of scalar mass parameters, with cancellations from Kaluza-Klein (KK) modes playing

as important a role as cancellations from superpartners [1]. Furthermore, beneath the mass scale

of the lightest KK modes, the 4D effective theory need not be supersymmetric — there is no

MSSM limit of the theory.

In the MSSM the weak scale is understood as a byproduct of the more fundamental supersym-

metry breaking scale. When KK modes play a crucial role in canceling the Higgs mass divergence,

the more fundamental scale is the effective compactification scale, Mc, which is the mass threshold

for the KK modes. This mass scale, which should not be far above the top quark mass, should

trigger the breaking of both supersymmetry and electroweak symmetry. In the constrained stan-

dard model of Ref. [2] Mc ≃ 350 GeV, and it is obvious that there is no MSSM limit: there is only

one Higgs doublet, and it couples to both up and down type quarks. Two Higgs theories can also

be constructed [3], as can theories with Mc considerably higher, in the 30 TeV region [4]. These

latter theories may mimic the MSSM at future collider experiments.

A common feature of these theories is that supersymmetry breaking arises because the bound-

ary conditions in the fifth dimension are taken to differ for fermions and bosons. The non-locality

of this breaking implies supersymmetry breaking counterterms cannot be induced by radiative

corrections. The cancellations in the Higgs mass parameters are more precise than in 4D theories,

so that the Higgs mass parameters are finite and calculable. In the constrained standard model

there is only a single Higgs field, with the potential calculated in terms of a single free parameter

Mc, making it possible to determine Mc by the Z mass and predict the physical Higgs boson mass:

127 ± 8 GeV.

Despite these successes, one must admit a significant drawback. In all these theories the gauge

and Yukawa couplings become strongly coupled in the multi-TeV domain and the UV cutoff of

the effective 5D field theory is reached long before the unification scale, so that the successful

prediction from conventional logarithmic unification is lost. Furthermore, since the cutoff of the

theory is in the multi-TeV domain, one must address the question of why gravity is so weak. This
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apparently requires further extra dimensions, either in the sub mm domain [5] or with a warp

factor [6].

There is a very simple way to maintain gauge coupling unification even when supersymmetry

is broken by boundary conditions in a fifth dimension. It is possible that the difference in the

boundary conditions between fermions and bosons is described by a very small angle α [7], so

that the scale of the superpartners, αMc, can become decoupled from the compactification scale.

Gauge coupling unification is recovered if Mc is taken at or above the unification scale. However,

in this case, since the KK modes are at or above the unification scale, the cancellation of the

top divergence in the Higgs mass parameter reduces precisely to the usual 4D supersymmetric

case. In this paper we want to ask a different question: is it possible for the KK modes to take

part in the cancellation of the Higgs mass divergence, while allowing conventional logarithmic

gauge coupling unification? Furthermore, how would the weakness of gravity be understood in

such a theory with TeV scale KK modes? One possibility is to also have sub mm scale extra

dimensions for the propagation of gravity, but then it is not clear how to recover gauge coupling

unification. A second possibility is that there is a warped extra dimension, in which case the

running of gauge couplings is logarithmic above the mass threshold for the KK towers [8, 9 –

14]. In general SU(3)C × SU(2)L × U(1)Y theories the low energy gauge couplings cannot be

predicted, because they depend on the tree-level 5D gauge couplings, which are free parameters

of the theory. However, if the bulk of this warped dimension has unified gauge symmetry such as

SU(5), one can show that the successful prediction of the MSSM for gauge coupling unification

can be obtained [15]. In fact, such theories can be constructed by breaking the unified gauge

symmetry either by the vacuum expectation value of a Planck-brane localized field [8] or by

boundary conditions imposed at the Planck brane [15]. This offers the possibility of exceptional

economy: the warped dimension that generates the TeV scale and the dimension which contains

supersymmetry breaking boundary conditions could be one and the same.

With the above motivation, in this paper we study boundary condition breaking of super-

symmetry in warped space, in particular in a slice of AdS5. Our aim is to construct a theory of

electroweak symmetry breaking where a crucial role is played by the TeV mass KK modes of this

warped extra dimension, while simultaneously solving the gauge hierarchy problem and address-

ing logarithmic gauge coupling unification. However, before attempting to construct a model, we

must study whether it is consistent to impose supersymmetry breaking boundary conditions in a

supersymmetric theory in a warped 5D spacetime.

We note that it is straightforward to construct 5D warped, supersymmetric theories with

supersymmetry broken spontaneously by a vacuum expectation value (VEV) located on the TeV

brane [16]. With gauge interactions in the bulk, but matter and Higgs fields on the Planck brane,

supersymmetry breaking is mediated to matter and Higgs via gaugino mass terms. By introducing

the bulk SU(5), one can also recover the MSSM prediction for gauge coupling unification [15].
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These theories are rather interesting, since the 5D nature for the Higgs mass cancellation is

obtained by taking the VEV to be large. However, in these theories the scale of supersymmetry

breaking is in principle a free parameter and is not strictly related to the KK mass scale. It is also

difficult to construct one Higgs theories with TeV brane localized supersymmetry breaking. In

this paper we explore theories where the two scales are tightly related through compactifications.

The boundary condition supersymmetry breaking in warped space has been considered before

in Ref. [17], but without addressing the issue of the consistency of the theory. Potential difficulties

of the theory with supersymmetry broken by boundary conditions in a warped fifth dimension

has been noted in Ref. [18]. Supersymmetry breaking boundary conditions were also considered

in warped space in [19]. In this paper we study the consistency of the theory in detail, and

during that course we develop the concept of symmetry breaking defects in higher dimensional

spacetime. In general, higher dimensional theories compactified on a spacetime with boundaries

can possess symmetry breaking defects at the boundaries. When do such defects lead to consistent

theories, and when do difficulties arise? In section 2 we study the local breaking of global internal

symmetries in flat space, and introduce a distinction between two types of defect: type I (type II)

defects which are (are not) consistent with a gauging of the global symmetry. For example, we

find that the boundary condition breaking of a U(1) gauge symmetry, or of the electroweak gauge

symmetry SU(2)L ×U(1)Y → U(1)EM , leads to type II defects and thus is not consistent in a flat

fifth dimension. In section 3 we show that the defects arising when supersymmetry is broken by a

boundary condition in a warped fifth dimension are of type II, preventing a consistent construction

of the corresponding supergravity theory. Despite this difficulty, in section 4 we construct an

SU(3)C × SU(2)L × U(1)Y model in a warped 5D background with supersymmetry broken by

boundary conditions. Such an effective theory may follow from some consistent fundamental

theory. We explore electroweak symmetry breaking in this theory when there is a single Higgs

hypermultiplet. We also construct an SU(5) theory in warped 5D spacetime where supersymmetry

is broken by boundary conditions in the fifth dimension, and show that consistent phenomenology

is obtained in the theory.

2 Symmetry Breaking Defects in Higher Dimensions

In this section we carefully study the notion of symmetry breaking defects in higher dimensional

effective field theories. These defects arise on a boundary of the bulk when the Lagrangian at

that boundary is invariant under a smaller internal symmetry than that of the bulk Lagrangian.

We find that there are two types of defect: type I defects arise when the reduction in symmetry

from bulk to boundary is entirely forced by the boundary conditions imposed on the fields of the

theory. On the other hand, for type II defects not all of the symmetry reduction is required by the

boundary conditions. For the first kind of defect, the internal symmetry can be gauged, and such
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defects were considered in Ref. [20] in the context of higher dimensional grand unified theories.

We discuss these defects in sub-section 2.1 using the example of SU(5) symmetry in 5D. In sub-

section 2.2, we introduce the second type of defect and find that the internal symmetry cannot be

consistently gauged. In section 3 we extend this analysis of defects to the case of supersymmetry,

and find that it has important consequences for supersymmetry breaking in truncated AdS5 space.

2.1 Type I symmetry breaking defect

In this sub-section we discuss the first kind of symmetry breaking defect. This type of defect

allows the whole symmetry structure to be gauged, and we call them type I symmetry breaking

defects. To illustrate the point, in this sub-section we consider 5D theories compactified on a flat

S1/Z2 orbifold: a line segment parameterized by y : [0, πR] with the metric of the spacetime given

by −ds2 = gMNdx
MdxN = ηµνdx

µdxν + dy2.

Let us first consider the theory in which the bulk Lagrangian possesses a global SU(5) sym-

metry: for example, the bulk Lagrangian is invariant under the transformation

φ→ exp(iTAξA)φ, (1)

where the field φ is in the 5 representation, TA are the generators of SU(5) and ξA are arbitrary

constants. If the spacetime we consider were non-compact, this would be the end of the story.

However, since we are considering the theory on a compact space (S1/Z2 orbifold), we have to

specify the boundary conditions on the fields to define the theory. Suppose we require that all

fields in a single irreducible representation of SU(5) obey the same boundary conditions. In this

case the full theory can possess the global SU(5) symmetry of Eq. (1), and the resulting space

does not have any symmetry breaking defect. What happens if we impose different boundary

conditions on fields in the same irreducible representation of SU(5)? This is the situation we want

to consider in this sub-section.

The boundary conditions on S1/Z2 are completely specified if we specify the conditions which

the fields must satisfy at y = 0 and y = πR. In general these conditions are written as

ϕ(y) = Zϕ(−y), ϕ(y′) = Z′ ϕ(−y′), (2)

where y′ ≡ y − πR; ϕ is a column vector collecting all the fields in the theory, while Z and Z′ are

matrices acting on this vector. The precise meaning of these conditions is the following. Although

our space is only for 0 ≤ y ≤ πR, we can fictitiously extend it to the domain y < 0 or y > πR using

the above equations. Then the dynamics of the fields (wavefunctions of the fields) are obtained

by solving the equations of motion in the whole covering space, including the terms arising from

brane-localized operators. (The importance of thinking in this way becomes clearer in the next

section because, unlike the flat space case, in AdS space we cannot construct the theory on S1/Z2
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by simple identification procedures from the corresponding theory on the non-compactified AdS

space.)

Now, we consider the matrices Z and/or Z′ which do not give the same boundary conditions

for all the fields in a single irreducible representation of SU(5). For illustrative purposes, we

choose these matrices to be Z = diag(1, 1, 1, 1, 1) and Z′ = diag(−1,−1,−1, 1, 1) when acting on

an SU(5) fundamental index. For instance, the triplet and doublet components, φT and φD, of

the 5 representation obey the boundary conditions φT (+,−) and φD(+,+), where the first and

second signs represent the eigenvalues of Z and Z′.

What are the consequences of imposing the above boundary conditions? First of all, the whole

theory obviously does not have a global SU(5) symmetry, since we have imposed different boundary

conditions on, say, φT and φD and they have different wavefunctions. The transformation of

Eq. (1) is inconsistent with the boundary conditions at y = πR, again demonstrating the absence

of the global SU(5) symmetry. However, physically we suspect that the physics at any local

neighborhood of the bulk must still reflect the original global SU(5) symmetry. This is because

the effect of the boundary conditions at y = πR, which is SU(5) violating, is suppressed by locality

in any point in the bulk. On the other hand, at the y = πR brane, the effect of SU(5)-violating

boundary conditions is maximal, and we suspect that physics will not reflect the original global

SU(5) symmetry. For example, the wavefunction values for φD can be non-zero at y = πR, while

those for φT must always be zero. This implies that it does not make sense to impose the SU(5)

symmetry on the operators on the y = πR brane. Hence we are led to ask: what is the most

general form of the action, and is there a symmetry transformation which guarantees this form?

We find the most general form for the action to be

S =

∫

d4x

∫

dy
[

LSU(5)
5D + δ(y)LSU(5)

4D + δ(y − πR)L3−2−1
4D

]

. (3)

Here, LSU(5)
5D and LSU(5)

4D respect the full SU(5) symmetry, while L3−2−1
4D respects only the SU(3)×

SU(2) × U(1) subgroup of SU(5). The different pieces of the Lagrangian are invariant under

global transformations of different size:

LSU(5)
5D ,LSU(5)

4D : φ → exp(iTAξA)φ, (4)

L3−2−1
4D : φ → exp(iT aξa)φ, (5)

where A runs over all SU(5) generators while a runs over the subset of those forming the SU(3)×
SU(2) × U(1) subgroup, and ξA are constant and do not depend on the coordinates. This is an

unusual situation — while the theory does possess a global SU(3) × SU(2) × U(1) symmetry,

the other transformations of SU(5) are not symmetries, since not all pieces of the Lagrangian

are invariant under them. In general in higher dimensional theories, it is useful to consider an

action where the bulk Lagrangian and the boundary Lagrangian possess different invariances. We
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will say that such theories possess restricted symmetries. Where the invariance at a boundary is

less than in the bulk we will say that there is a symmetry breaking defect at the boundary. In

our SU(5) example, we therefore find that the boundary conditions have forced a reduction of

the original global symmetry to a restricted global symmetry, with a symmetry breaking defect

appearing at the y = πR brane. The question is whether this new concept of a restricted global

symmetry, such as Eqs. (4, 5), is really useful: does it lead to relations amongst counterterms, for

example sufficient to yield Eq. (3) as the most general action? Locality suggests that this is so:

at short distances (i.e. with large momentum) in the bulk, the effect from the y = πR boundary

is exponentially suppressed due to Yukawa suppression (the 4D momentum appears as a mass in

the direction of the fifth dimension). The same argument applies to the Lagrangian at the y = 0

brane. Therefore, we expect that all divergences are absorbed into the counterterms preserving

the form of Eq. (3).

This expectation is confirmed because the theory defined by Eq. (3) possesses a conserved

SU(5) current in the bulk, and a conserved SU(3) × SU(2) × U(1) current at y = πR, at the

quantum level. The notion of a restricted global symmetry, which takes a different form at different

locations, makes sense because current conservation occurs locally. We can demonstrate that these

currents are conserved, for instance, by the Noether procedure in the path integral formalism. We

consider varying the fields with position dependent ξ’s. The position dependence of ξ’s must be

consistent with the boundary conditions of the fields and with the form of the restricted global

symmetry. Specifically, we have to restrict the y dependence of ξ’s as ξa(+,+) and ξâ(+,−) where

a and â run for SU(3) × SU(2) × U(1) and SU(5)/(SU(3) × SU(2) × U(1)), respectively. When

expanded in the complete set in the fifth dimension, they are written as

ξa(xµ, y) =
∑

n=0

ξa
n(xµ) cos

(ny

R

)

, (6)

ξâ(xµ, y) =
∑

n=0

ξâ
n(xµ) cos

(

(n+ 1/2)y

R

)

. (7)

Note that with ξâ having boundary conditions (+,−) we automatically have ξâ(xµ, y = πR) = 0,

ensuring that we restrict transformations to be in SU(3)×SU(2)×U(1) at y = πR. The rest of the

procedure is the usual one. Although the action, Eq. (3), is not invariant under the transformation

by Eqs. (6, 7), the variation is proportional to the derivatives of ξ’s since Eq. (3) is invariant under

transformations with constant ξ’s. This leads to a conservation law, which tells us that there is a

conserved current for SU(5) in the bulk and on y = 0, but only the SU(3) × SU(2) × U(1) part

of it is conserved at y = πR.

We are now in a position to consider gauging the restricted global symmetry of the system.

It is the gauging which distinguishes between the two types of defects discussed in this and the

next sub-sections. The gauging of the restricted global symmetry is accomplished by requiring
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the theory to be invariant under the transformations of Eqs. (6, 7) with arbitrary functions of

ξa
n(x

µ) and ξâ
n(x

µ).1 Since the kinetic terms of the original Lagrangian with restricted global

symmetry are not invariant under these transformations, we have to introduce the connection

fields AA
M(xµ, y), which are in the adjoint representation of SU(5). The boundary conditions

for these fields are determined to be Aa
µ(+,+) and Aâ

µ(+,−) (Aa
5(−,−) and Aâ

5(−,+)) from the

transformation properties of these fields, AA
M → AA

M + ∂Mξ
A + · · · . The expansion then goes as in

Eqs. (6, 7) with ξa and ξâ replaced by Aa
µ and Aâ

µ (for A5’s, replace the cosine by sine and start the

sum for Aa
5,n from n = 1). Therefore, we find that there is a one-to-one correspondence between

the modes AA
µ,n and ξA

n . This is crucial for the consistency of the gauge theory: each gauge field

requires a corresponding gauge symmetry. This one-to-one correspondence characterizes what we

call type I symmetry breaking defects. In our SU(5) example, gauging produces a restricted gauge

symmetry (the transformations of Eqs. (4, 5) with all ξ now local) yielding a consistent effective

higher dimensional field theory below the cutoff, as discussed in detail in Ref. [22]. Restricted

gauge symmetries play an important role for constructing realistic higher dimensional grand unified

theories [20], which have automatic doublet-triplet splitting [23], proton decay suppression [20],

and an interesting new prediction for gauge coupling unification [24]. In the next sub-section,

we consider a different kind of defect, which violates the above one-to-one correspondence, and

consequently does not allow the consistent gauging of the symmetry.

2.2 Type II symmetry breaking defect

As in the previous sub-section, we consider a theory on the flat S1/Z2 orbifold. We consider a

restricted symmetry where the bulk and the y = 0 brane possess a global U(1) invariance but the

y = πR brane does not. The action of this system takes the form:

S =

∫

d4x

∫

dy
[

LU(1)
5D + δ(y)LU(1)

4D + δ(y − πR)L×
4D

]

. (8)

Here LU(1)
5D and LU(1)

4D are invariant under the field rotation φ→ exp(iQφξ)φ, but L×
4D is not, where

φ is a field carrying the U(1) charge of Qφ and ξ is an arbitrary constant. The boundary conditions

for φ are taken to be either (+,+), (+,−), (−,+) or (−,−) [the other possibilities are mentioned

in footnote 2].

Does the above action make sense? To answer this question, we have to study radiative correc-

tions. As in the previous example, we find that all divergences are absorbed in the counterterms

preserving the form of the Lagrangian. Here we prove this using the Noether procedure in the

path integral formalism. We consider the U(1) transformation parameter ξ to be a function of

1The gauging is possible only when the theory is anomaly free. If the low energy 4D theory does not have
anomalies, we can in general make the full higher dimensional theory to be anomaly free by introducing an
appropriate Chern-Simons term in the bulk [21].
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the spacetime. The boundary conditions for ξ are determined to be ξ(+,+) so that this U(1)

transformation preserves the boundary conditions for φ’s. A mode expansion gives

ξ(xµ, y) =
∑

n=0

ξn(xµ) cos
(ny

R

)

. (9)

However, we now have an extra constraint. Because the above expansion does not ensure the

vanishing of ξ(xµ, y) at y = πR, where U(1) symmetry is supposed to be absent, we have to

impose a further condition on the ξa
n(xµ)’s:

∑

n=0

ξn(x
µ) cos(πn) = 0. (10)

We now vary the action with arbitrary ξa
n(xµ)’s under the constraint Eq. (10). Then we find that

the variation is proportional to the derivative of ξ(xµ, y), giving a current associated with U(1)

which is conserved everywhere except y = πR. Therefore, we find the system with a restricted

global U(1) symmetry with a symmetry breaking defect at y = πR is meaningful, in the sense that

its structure is preserved by radiative corrections. This situation is quite similar to the restricted

global SU(5) symmetry with the SU(3) × SU(2) × U(1) defect.

Now, we consider gauging this restricted U(1) global symmetry, i.e. we require the theory to

be invariant under position dependent ξ. To make the kinetic term of the original Lagrangian

invariant, we must introduce the connection fields, AM(xµ, y). The boundary conditions for these

fields are determined to be Aµ(+,+) and A5(−,−) from their transformation properties AM →
AM +∂Mξ. Therefore, the mode expansions for these fields are given by Eq. (9) with ξ replaced by

Aµ (for A5, replace the cosine by sine and start the sum from n = 1). Unlike the gauge parameter

ξ, however, these gauge fields AM are dynamical fields, so that we cannot simply impose the

constraint like Eq. (10). In particular, all Aµ,n(xµ) are independent fields. This means that the

number of gauge transformation parameters, ξn(xµ), is smaller than the number of gauge fields,

Aµ,n(xµ), due to the constraint imposed on the ξn(x
µ)’s, Eq. (10). This leads to an inconsistency

of the theory, because, from the 4D viewpoint, there is one gauge field which is not accompanied

by a corresponding gauge symmetry. As is well known, such a gauge field gives a ghost which can

be produced as an external particle, leading to negative probabilities for certain processes.

Therefore, we find that the defect in this U(1) theory has a different character from the one

discussed in the previous sub-section, and we call it a defect of type II. When the restricted sym-

metry is global the two types of defect have similar properties, but when the restricted symmetry

is gauged quite different features are revealed: one allows consistent gauging but the other does

not. The criterion for distinguishing the two is whether the number of gauge transformation pa-

rameters is the same as or smaller than the number of the gauge fields (counting modes in the 4D

picture). Type I defects arise naturally when the restricted symmetry is taken to be the largest

possible consistent with the boundary conditions imposed on the fields. In the U(1) example,
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the boundary conditions are consistent with a (+,+) parity assignment to ξ, so that both branes

would naturally be expected to have Lagrangians which respect the U(1) symmetry.2 Type II

defects arise when the invariance on the boundary is taken to be less than the maximal consistent

with the boundary conditions. Clearly there are much more general possibilities than we have

discussed, even on S1/Z2. The restricted global symmetry may correspond to invariances of the

three pieces of the Lagrangian under transformations of different sizes. Type I defects arise if

these transformations on a boundary Lagrangian are the largest consistent with the boundary

conditions that have been imposed on the fields. If the boundary Lagrangian is invariant under a

smaller set of transformations, then the defect is type II.

A case of potential phenomenological interest has the bulk Lagrangian invariant under the

electroweak group SU(2)L × U(1)Y , with a boundary Lagrangian invariant under the smaller

electromagnetic symmetry group U(1)EM . Apparently this provides an alternative electroweak

symmetry breaking mechanism — no Higgs bosons or new strong dynamics are needed since the

defect explicitly breaks weak interactions. However, this defect is of type II: there is no way of

imposing boundary conditions on the fields such that the reduction of symmetry on the boundary

is required for consistency with the boundary conditions. Incidentally, in the next section when

we consider boundary condition breaking of supersymmetry in warped space, we will similarly

discover that the defects are of type II.

Although we find that type II defects do not allow gauging of the symmetry in a straightfor-

ward way, we can obtain a low energy effective field theory which mimics the gauging of type II

defects. For instance, to mimic the above theory, we can first consider a 5D U(1) gauge theory

compactified on the flat S1/Z2 orbifold without any defect. Then, if we break this U(1) by the

vacuum expectation value for the Higgs field h localized on the y = πR brane, we find that the

wavefunctions for the gauge field are given by ∼ cos((n+1/2)y/R) in the limit 〈h〉 → ∞ [25]. The

operators on the y = πR brane can now pick up the effect of this large expectation value, so that

they effectively do not respect the U(1) symmetry. Thus the action of the resulting effective field

theory is given by Eq. (8) with the U(1) symmetry gauged. Although this theory with large brane

Higgs expectation value does not completely reproduce the properties of the theory where the

restricted global symmetry with type II defects were gauged, it shares many properties with such

a (non-existent) theory. Therefore, it may not be so meaningless to consider theories with type II

2If the theory possesses a charge-conjugation symmetry, say has two fields ϕ and ϕ̄ with the opposite charges
Qϕ = −Qϕ̄, one can choose the boundary conditions at y = πR so that all the fields are identified with the
corresponding charge-conjugated ones, ϕ(xµ, y) = ϕ̄(xµ, y)|y=πR, which forces ξ(xµ, y) to be vanishing at y = πR
(if ϕ is a scalar field, we could choose ϕ(xµ, y) = ϕ∗(xµ, y)|y=πR and do not necessarily need ϕ̄). In this case the
resulting U(1)-breaking defect at y = πR is type I, because it is the largest possible symmetry consistent with the
boundary conditions imposed on the fields. The transformation properties for the gauge field and transformation
parameter are then given by Aµ(+,−), A5(−, +) and ξ(+,−), assuming the usual Neumann or Dirichlet boundary
conditions for ϕ and ϕ̄ at y = 0.

9



defects and consider the gauging of its symmetry, in the sense that we might find some underlying

theory reproducing some of the features possessed by such a theory. This is the attitude we will

take in section 4 when we consider theories with boundary condition supersymmetry breaking in

warped space.

3 Supersymmetry Breaking in Warped Space

In this section we study the supersymmetry structure of theories on truncated AdS5 space, i.e.

AdS5 with the fifth dimension compactified on the S1/Z2 orbifold. The metric for 5D AdS space

with 4D Poincare invariance is given by

−ds2 = gMNdx
MdxN = e−2σ(y)ηµνdx

µdxν + dy2, (11)

where ηµν = diag(−1, 1, 1, 1) and σ(y) = ky with 0 ≤ y ≤ πR.

Although the physical space of S1/Z2 is only 0 ≤ y ≤ πR, we can extend it to all values

for y with the understanding that different points are identified as y ∼ −y and y′ ∼ −y′, where

y′ = y − πR. This is a useful procedure because we can then figure out the physics at the

boundaries, y = 0, πR, just by considering the equations of motion etc. across these points. The

extension of the metric to the (fictitious) space y < 0 and y > πR is given by
{

σ(y) = k|y| in − πR ≤ y ≤ πR,
σ(y + 2πR) = σ(y),

(12)

since gµν must be even under y → −y and y′ → −y′.
In sub-section 3.1 we define global supersymmetry in AdS space and write down the bulk

Lagrangian. The effects of the boundaries are considered in sub-section 3.2. We show that, if

we impose boundary conditions on the fields that preserve N = 1 supersymmetry in 4D, the two

boundaries at y = 0 and πR are supersymmetry breaking defects of type I in the classification of

the previous section. On the other hand, if we impose boundary conditions which break all the

supersymmetries in 4D, we find that the resulting defect is type II. This leads to an important re-

sult that when we gauge supersymmetry, which is required to incorporate gravity into the theory,

then the theory with supersymmetry breaking boundary conditions becomes inconsistent. There-

fore, if we want to consider warped theories with supersymmetry breaking boundary conditions,

such theories must be viewed, at best, as phenomenological approximations to some consistent

theories that mimic the desired properties of the theories with boundary condition supersymmetry

breaking.

3.1 Supersymmetry in the bulk of AdS5

In this sub-section we study supersymmetry in AdS space and write down the off-shell Lagrangian

in the bulk of S1/Z2. Recall that a commutator of two supersymmetry transformations δξ and δη,

10



parameterized by two Dirac spinors ξ and η respectively,3 acts on the coordinates xM as

xM −→ xM + ǫM ,

where [δη, δξ] = 2(η̄γMξ − ξ̄γMη)∂M ≡ ǫM∂M . (13)

Under this coordinate transformation, the metric gMN changes as

gMN −→ gMN + ǫL∂LgMN + gLN∂M ǫ
L + gML∂N ǫ

L. (14)

Now, a global supersymmetry transformation is defined as the supersymmetry transformation

which leads to ǫM that leaves gMN unchanged. Namely, we require ǫM to satisfy

ǫL∂LgMN + gLN∂M ǫ
L + gML∂N ǫ

L = 0, (15)

or more explicitly

∂5ǫ
5 = 0, (16)

gµν∂5ǫ
ν + ∂µǫ

5 = 0, (17)

−2σ′gµνǫ
5 + gρν∂µǫ

ρ + gµρ∂νǫ
ρ = 0, (18)

where σ′ ≡ ∂σ/∂y. The vector ǫM is called a Killing vector, and the above equations are called

Killing vector equations.

By replacing ǫM in Eqs. (16 – 18) by Eq. (13), we find that the Killing vector equations are

satisfied if ξ (and η) satisfies certain conditions. Such a spinor is called a Killing spinor. We write

these conditions, called Killing spinor equations, using the symplectic Majorana spinor notation:

we express the 5D supersymmetry transformation parameter ξ by two Dirac spinors ξ1 and ξ2

obeying a single relation.4 In this notation, Eq. (13) simply becomes ǫM = η̄iγ
Mξi. First, we find

3We use the following convention for γ-matrices:

{γM , γN} = 2gMN , γµ = −ieσ(y)

(

0 σµ

σ̄µ 0

)

≡ eσ(y)γ̂µ, γ5 = γ5 = −iγ̂0γ̂1γ̂2γ̂3 =

(

1 0
0 −1

)

,

where σµ = (1, ~σ) and σ̄µ = (1,−~σ). The Dirac conjugate is defined as Ψ̄ ≡ Ψ†iγ̂0.
4Here, ξ1 and ξ2 together correspond to a single Dirac spinor ξ. They are related as

ξ1 ≡ ξ, ξ2 ≡ −Cξ∗, so that ξi = ǫijCξ∗j and ξ∗i = (ξi)∗,

where C ≡ −γ̂2γ5 is the 5D charge conjugation matrix and has properties, C2 = −1 and CγMC−1 = −γM∗. Thus
both ξ1 and ξ2 properly transform as 5D Dirac spinors, and simultaneously they form a doublet under the SU(2)R

automorphism group of the 5D supersymmetry. In terms of more familiar two component notation, they are:

ξ1 =

(

ξLα

ξ̄α̇
R

)

, ξ2 =

(

−ξRα

ξ̄α̇
L

)

.

There is one convenient identity for these spinors: ξ̄iγ
M · · · γKηj = η̄jγK · · · γMξi, for any ξi and ηi.

11



that the most general form for the constraint that solves Eq. (16) and is consistent with the 4D

Lorentz invariance is given by

∂5ξ
i = −σ

′

2
H i

jγ5ξ
j − iσ′

2
Ki

jξ
j, (19)

where ξi represents a general Killing spinor, and H i
j and Ki

j are 2×2 arbitrary Hermitian matrices

which can even depend on positions in spacetime. At this stage, the only constraints for these

matrices come from differentiating the identity ξi = ǫijC(ξj)∗ by y, which leads to

Tr[H ] = Tr[K] = 0. (20)

We next consider Eq. (17) and find that, in order to solve this, we need an equation for ∂µξ
i as

well as Eq. (19). The most general form of this is given by

∂µξ
i = −σ

′

2
H i

jγµξ
j − σ′

2
γ5γµξ

i − iσ′

2
Li

jγµξ
j, (21)

where Li
j is a new arbitrary 2 × 2 Hermitian matrix. Finally, we consider the last equation,

Eq. (18). We find that this equation is satisfied if and only if

Li
j = 0. (22)

Therefore, we find that the Killing spinor must satisfy the equations

∂5ξ
i = −σ

′

2
H i

jγ5ξ
j − iσ′

2
Ki

jξ
j, (23)

∂µξ
i = −σ

′

2
H i

jγµξ
j − σ′

2
γ5γµξ

i, (24)

where H i
j and Ki

j are arbitrary 2 × 2 traceless Hermitian matrices.

Let us now examine whether Eqs. (23, 24) have a non-trivial solution or not. If there exists a

non-trivial and reasonable ξ, it must satisfy

[∂M , ∂N ]ξi = 0. (25)

Evaluating the above commutator for M = µ and N = ν gives the following constraints on the

matrix H :

H2 = 1, (26)

∂µH = 0, (27)

where 1 and 0 are the unit and zero 2 × 2 matrices. On the other hand, [∂µ, ∂5]ξ
i = 0 gives the

following constraints on H and K:

∂µK = 0, (28)

−i∂5H =

[

−σ
′

2
K,H

]

, (29)
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and the conditions for ξi:

H i
j(y)ξ

j = γ5ξ
i at y = 0 and πR. (30)

Because the form of Eq. (29) is identical to the Heisenberg equation of motion for the operator H

with “time” y and “Hamiltonian” −(σ′/2)K, we can write the general solution as:

H(y) = U(y)H(0)U †(y), (31)

where, having Eqs. (26, 28) in mind, H(0) and U(y) are given by

H(0) = naσa, (32)

U(y) = Ŷ exp

[

− i

2

∫ y

0

σ′K(y′)dy′
]

, (33)

where na (a = 1, 2, 3) is a constant real vector with unit length nana = 1, σa are the Pauli spin

matrices, and Ŷ is the “time”-ordering operator. We can check that this solution solves all the

constraints on H and K, Eqs. (26 – 29). Note also that U(y) belongs to SU(2) because K is

Hermitian and traceless.

The above Killing spinor equation contains important information about the symmetry struc-

ture of the theory. We consider the SU(2)R automorphism group of the 5D supersymmetry, under

which ξ1 and ξ2 form a doublet. In flat space (σ′ = 0), this SU(2)R is a symmetry of the algebra

and thus respected by the whole theory. In AdS, however, we find that it is broken by the presence

of the matrices H and K in Eqs. (23, 24). Now, we consider redefining the fields by a twist inside

SU(2)R. This results in the redefinition of ξi according to

ξi(y) −→ Ũ(y)i
jξ

j(y), (34)

where Ũ(y) is a y-dependent matrix taking arbitrary values in SU(2). Note that, since we are

just redefining the name of the fields, this does not change any physics. Then, substituting

Eq. (34) into Eqs. (23, 24) and choosing Ũ(y) = U(y), we find that H(y) is replaced by H(0) and

the K(y) term is canceled. We can further make a y-independent SU(2)R rotation and choose

(n1, n2, n3) = (0, 0, 1) for H(0). Therefore, we finally obtain the following simple form for the

Killing spinor equations in AdS5:

∂5ξ
i = −σ

′

2
(σ3)

i
jγ5ξ

j, (35)

∂µξ
i = −σ

′

2
(σ3)

i
jγµξ

j − σ′

2
γ5γµξ

i. (36)

These equations show that a U(1)R subgroup of SU(2)R remains unbroken in the AdS background.

The constraint on ξi, Eq. (30), now becomes

(σ3)
i
jξ

j = γ5ξ
i at y = 0 and πR. (37)
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These three equations define global supersymmetry in the truncated AdS5 on S1/Z2. The form

of the bulk Lagrangian is determined by Eqs. (35, 36). The Killing spinor boundary constraint

of Eq. (37) is crucially important when we consider the effect of the boundaries in the next sub-

section. In particular it requires that ξRα = 0 at both boundaries.

Finally, we write down the off-shell bulk Lagrangians (in the basis where the Killing spinor

equations take the form of Eqs. (35, 36)). Effects of boundaries, including Eq. (37), will be

considered in the next sub-section. We begin with a hypermultiplet, which consists of two complex

scalars, φ1 and φ2, and a Dirac spinor, Ψ, and two complex auxiliary fields, F 1 and F 2. The kinetic

part of the action is given by

Shyp.kin. ≡
∫

d4x

∫

dy
√−g Lhyp.kin., (38)

Lhyp.kin. = −gMN∂Mφ
∗
i ∂Nφ

i − 1

2
Ψ̄γM∂MΨ +

1

2
∂MΨ̄γMΨ + F ∗

i F
i +

15

4
k2φ∗

iφ
i, (39)

where i = 1, 2 and both φi and F i are doublets under SU(2)R; in particular φi = ǫijφ
j, φ∗

i = (φi)∗,

and so on. This action is invariant under the following global supersymmetry transformation:

δφi =
√

2ǫij ξ̄jΨ,

δΨ =
√

2

(

γMξi∂Mφi −
3

2
σ′ξiφj(σ3)

j
i + ξiFi

)

, (40)

δF i =
√

2ǫij
(

ξ̄jγ
M∂MΨ − 2σ′ξ̄jγ5Ψ

)

,

where the global supersymmetry transformation parameter ξi satisfies Eqs. (35, 36). In addition

to the above kinetic part, Eq. (39), we can also add a mass to the hypermultiplet:

Lhyp.mass = −cσ′Ψ̄Ψ + cσ′(F ∗
i φ

i + φ∗
iF

i) − ck2(σ3)
i
jφ

∗
iφ

j, (41)

where c is a dimensionless real constant. This by itself is invariant (up to a total derivative) under

the global supersymmetry transformation, Eqs. (40) with Eqs. (35, 36).

The gauge supermultiplet consists of a vector field AM , a Dirac gaugino Ψλ, a real scalar Σ,

and three real auxiliary fields Xa (a = 1, 2, 3). The Lagrangian is given by

Lgauge =
1

g2

[

−1

4
gMLgNKFMNFKL − 1

2
gMN∂MΣ ∂NΣ − 1

2
λ̄iγ

M∂Mλ
i +

1

2
XaXa

+ 2k2Σ2 − 1

4
σ′(σ3)

i
jλ̄iλ

j

]

, (42)

where we have chosen the gauge group to be U(1) for simplicity. We have also used the symplectic

Majorana notation for the gaugino: Ψλ is represented by the two Dirac spinors λ1 and λ2. Note
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that the gaugino and the auxiliary fields form a doublet and a triplet, respectively, under SU(2)R.

This Lagrangian is supersymmetric under the following global supersymmetry transformation:

δAM = −ξ̄iγMλ
i,

δΣ = iξ̄iλ
i,

δλi = −iγMξi∂MΣ − 1

2
γMγNξiFMN + 2iσ′Σ(σ3)

i
jξ

j − i(σa)
i
jξ

jXa, (43)

δXa = iξ̄iγ
M∂Mλ

j(σa)i
j − 2iσ′ξ̄iγ5λ

j(σa)i
j ,

where ξ satisfies the condition Eqs. (35, 36). Generalization to a non-Abelian group is fairly

straightforward (giving the appropriate gauge structure, adding certain gaugino-gaugino-scalar

interactions, changing the derivatives to gauge covariant derivatives, and so on). These bulk

Lagrangians, Eqs. (39, 41, 42), reproduce the on-shell bulk Lagrangians given in Refs. [26], after

integrating out the auxiliary fields (assuming no boundaries).

3.2 Effects of the boundaries

In this sub-section we consider the effects of the boundaries. We follow the discussion in section 2

and consider the symmetry structure of the theory. A new ingredient compared with the previous

case is the constraint coming from the Killing spinor equation, Eq. (37). This additional compli-

cation arises from the fact that supersymmetry is a spacetime symmetry. The other parts of the

discussion, however, are quite analogous to the previous case.

We begin by considering the boundary conditions on the fields. As explained in the previous

section, the boundary conditions are written as Eq. (2), where ϕ is a column vector collecting

all the fields in the theory, including the metric gMN . Since the matrices Z and Z′ must be

representations of the two reflections Z : y → −y and Z ′ : y′ → −y′, respectively, they must obey

the relations:

Z2 = 1, Z′2 = 1. (44)

Thus we find that the general boundary conditions are given as follows. Under the reflection Z,

the fields obey

φi(y) = PΦU
i
j(σ3)

j
kφ

k(−y),
Ψ(y) = PΦγ5Ψ(−y), (45)

F i(y) = PΦU
i
j(σ3)

j
kF

k(−y),
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and

Aµ(y) = Aµ(−y), A5(y) = −A5(−y),
λi(y) = U i

j(σ3)
j
kγ5λ

k(−y),
Σ(y) = −Σ(−y), (46)

Xa(y) =
1

2
tr[σaUσ3σbσ3U †]Xb(−y),

where U = exp[2πi(α1σ1 + α2σ2)] with 0 ≤ α1,2 < 1, and each hypermultiplet can have its own

parity PΦ = ±1. The boundary conditions under Z ′ is also given similarly, by the replacement

y → y′, U → U ′ (α1,2 → α′
1,2) and PΦ → P ′

Φ in Eqs. (45, 46), where 0 ≤ α′
1,2 < 1 and P ′

Φ = ±1.5

Now, we study the supersymmetry structure of the theory: a conservation law for the super-

current. Following the discussion in section 2, we consider the Noether procedure in the path

integral formalism. What position dependence should we allow for the supersymmetry trans-

formation parameter, and how many supersymmetries are preserved in each point in the extra

dimension? First, we can easily see that there are 4D N = 2 supersymmetries in the bulk, because

in any local neighborhood of the bulk we can solve the Killing spinor equation, Eqs. (35, 36), as

ξ1(xµ, y) = exp(−σγ5/2)(1 − σ′ exp(σ)γµx
µ(1 − γ5)/2)ξ0, which is parameterized by an arbitrary

constant Dirac spinor ξ0. A non-trivial question is the number of supersymmetries on the bound-

aries. At the boundaries y = 0 and πR, the supersymmetry transformation parameter must obey

the condition Eq. (37). On the other hand, the boundary conditions for the fields, Eqs. (45, 46)

implies that the supersymmetry transformation parameter must obey

ξi(y) = U i
j(σ3)

j
kγ5ξ

k(−y), ξi(y′) = U ′i
j (σ3)

j
kγ5ξ

k(−y′), (47)

to preserve the boundary conditions of the fields. The number of supersymmetries on the bound-

aries is then determined by these two conditions, Eq. (37, 47).

Let us focus on the y = 0 boundary (the discussion for the y = πR boundary is identical). We

first consider the case α1 = α2 = 0. In this case, Eq. (37) and Eq. (47) become identical; in other

words, the Killing spinor equation does not give an additional constraint on the transformation

parameter ξi beyond the one arising from the boundary conditions, Eq. (47). This situation is

similar to the SU(5) example discussed in sub-section 2.1. In fact, we find that the y = 0 brane

is supersymmetry breaking defect of type I, on which the 4D N = 2 supersymmetry in the bulk

is broken to 4D N = 1. The number of supersymmetries can easily be understood from Eq. (47):

ξi(y) = (σ3)
i
jγ5ξ

j(−y) requires half of ξi to vanish at y = 0. A defect of type I implies that the

symmetries can be consistently gauged, i.e. the theory can be embedded into supergravity. In

supergravity, the gravitino ψ3/2 obeys the boundary conditions analogous to Eq. (47). Thus, when

5Here we have assumed the boundary conditions do not break the gauge symmetry, although including such
breaking is straightforward. The procedure is exactly identical to that in flat space.

16



expanded into 4D modes, the number of ψ3/2’s and the number of ξ’s are the same (there is no

need to impose any extra constraint on the gravitino field), ensuring the consistency of the theory

with local supersymmetry. In particular, if we choose α1 = α2 = α′
1 = α′

2 = 0, the resulting

theory possesses unbroken 4D N = 1 supersymmetry, whose transformation parameter is given by

ξ1(xµ, y) = exp(−σ/2)ξL where ξL is a spinor (dependent on coordinates in supergravity) subject

to the condition γ5ξL = ξL. The explicit realization of this case in the context of supergravity has

been extensively studied [27].

We next consider the case where either α1 or α2 is non-zero. In this case Eq. (37) and Eq. (47)

give different conditions, and we find that the solution to both equations is only the trivial one,

ξi = 0. This implies that we do not have any supersymmetry on the y = 0 brane. Since the

constraint ξi(y = 0) = 0 is an extra condition imposed on ξ, additional to the one arising from

the boundary conditions, the situation is similar to the U(1) example discussed in sub-section 2.2

with ξi(y = 0) = 0 corresponding to Eq. (10). The defect is type II and does not allow gauging of

the supersymmetry of the theory. The argument is similar to the previous U(1) case. When we

gauge supersymmetry, we must introduce the gravitino field and impose boundary conditions like

Eqs. (47). Since the gravitino is a dynamical field, we cannot impose any additional constraint by

hand. This implies that the number of ξ’s is one smaller than that of ψ3/2’s (in the 4D picture)

due to the extra constraint ξi(y = 0) = 0. Since the consistent treatment of a spin-3/2 field

requires a supersymmetry, this leads to an inconsistency; for instance, in such theories ghosts

can be physically produced and certain scattering amplitudes lead to negative probabilities (the

presence of such ghosts was also noted in Ref. [18]).

Why do we insist on gauging supersymmetry? If supersymmetry were not a spacetime symme-

try, we would be able to consider only global supersymmetry. We would be able to use arbitrary

values for α1,2 and α′
1,2 to construct models, in which supersymmetry is broken by boundary

conditions. However, supersymmetry is spacetime symmetry. When we include gravity, we have

to consider supergravity, in which supersymmetry is gauged. This means that the boundaries at

y = 0 and πR must be symmetry breaking defects of type I: α1,2 and α′
1,2 must be zero. Therefore,

we arrive at the following conclusion. In AdS5 the compactification on S1/Z2 is unique: we cannot

use boundary conditions to break all bulk supersymmetries in a warped extra dimension.

Nevertheless, in the next section we consider models on the truncated AdS5 in which super-

symmetry is broken by boundary conditions. As mentioned at the end of sub-section 2.2, we do

this because some theories can mimic certain properties of the theory with boundary condition

supersymmetry breaking. For instance, consider a theory with α1 = α2 = α′
1 = α′

2 = 0 and break

supersymmetry spontaneously by the expectation value for the F -component of a brane-localized

chiral superfield Z at y = πR. Then, if this expectation value is large (we can formally take

FZ → ∞), we find that some properties of the boundary condition breaking, such as strict rela-
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tions between supersymmetry breaking masses and the KK mass scale, are recovered [3].6 Thus,

although the models presented in section 4 do not allow consistent inclusion of gravity as they

are, we think that it is worthwhile constructing some representative models and exploring their

phenomenology.

We note that the case of supersymmetry breaking by boundary conditions in flat space is now

very simple to analyze. The Killing spinor equations become trivial, with ξi becoming constant

for a global transformation; crucially there is no Killing spinor constraint at the boundary, such

as Eq. (37). Therefore, the issue we have in AdS space, i.e. the incompatibility of Eq. (47) with

Eq. (37), does not exist in flat space. Thus, any choices for the matrices U i
j and U ′i

j in Eq. (47) yield

type I defects at both boundaries, where each boundary preserves a single 4D supersymmetry, with

the orientation of the supersymmetry in SU(2)R space depending on the parameter α relevant at

that boundary. The entire system preserves a supersymmetry in 4D only if the two boundaries

preserve the same supersymmetry, α = α′, otherwise supersymmetry is completely broken by the

boundary conditions. If either boundary is allowed to have a Lagrangian which is not invariant

under any supersymmetry, the resulting N = 0 defect is of type II, so that the resulting theories

are inconsistent with supergravity.

Finally in this section, we complete the Lagrangian in the case of α1 = α2 = α′
1 = α′

2 = 0. The

bulk Lagrangian of Eqs. (39, 41, 42) is not invariant under the supersymmetry transformation at

y = 0 and πR. For instance, when we vary the hypermultiplet action Eqs. (38, 39), we find that

the terms that spoil invariance appear from ∂y acting on σ′:

√
−gδLhyp.kin. =

√
−g

[

· · · + 3

2
σ′′

√
2Ψ̄ξiφi + h.c.

]

, (48)

where σ′′ = 2k(· · · + δ(y) − δ(y − πR) + · · · ). However, these terms can be canceled if we add

brane mass terms for the scalars:

Lhyp.kin. → Lhyp.kin. −
3

2
σ′′φ∗

iφ
i. (49)

This gives the correct supersymmetric Lagrangian on AdS5 compactified on S1/Z2. A similar

analysis for Eqs. (41, 42) leads to

Lhyp.mass → Lhyp.mass + cσ′′(σ3)
i
jφ

∗
iφ

j , (50)

Lgauge → Lgauge −
1

g2
σ′′Σ2. (51)

After integrating out the auxiliary fields, these Lagrangians agree with the on-shell Lagrangian

given in Ref. [16].

6Maintaining the background geometry with a non-vanishing FZ may require certain compensating terms on
boundaries, but we assume these terms do not affect the spectrum of the theory significantly.
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4 Models

4.1 Warped constrained standard model

Consider an SU(3)C × SU(2)L × U(1)Y supersymmetric gauge theory on truncated AdS5 space.

Each 4D boundary is necessarily a defect in the space of supersymmetries, since the two bulk

supersymmetries cannot coexist on a 4D boundary. In the last section we have shown that if

both defects are of type I, then the supersymmetries preserved at each boundary must align with

each other, so that the entire system preserves a 4D supersymmetry. To break supersymmetry by

boundary conditions, we must consider supersymmetry breaking by means of a defect of type II.

Furthermore, we assume that the Planck brane located at y = 0 is a type I defect preserving one

supersymmetry, since, if it were type II, all supersymmetries would be broken at the Planck scale.7

Therefore the TeV brane at y = πR must be of type II, so that couplings on this brane explicitly

break all supersymmetries.

The field content and boundary conditions are chosen to be identical to those of the constrained

standard model [2], so that gauge, matter, and a single Higgs hypermultiplet all propagate in

the bulk. Since there is a single zero-mode Higgs boson, we expect a Higgs sector far more

constrained than that of the MSSM. The supersymmetry breaking boundary conditions are those

of Eqs. (45, 46) with α′
2 = 1/2, α1,2 = α′

1 = 0 and Pmatter = P ′
matter = +1, PHiggs = −P ′

Higgs = +1.

The mass spectrum for both matter-like and Higgs-like boundary conditions are shown in Fig. 1.

While these boundary conditions are identical to those of the flat space constrained standard

model, we stress that in that theory both boundary defects were of type I preserving orthogonal

supersymmetries, so that the structure of supersymmetry breaking differs greatly in the warped

case. We assume that all matter hypermultiplets have a bulk mass cM = 1/2, ensuring that the

quark and lepton zero modes are conformally flat. This is analogous to the flat space theory in

the absence of bulk masses. We expect that deviations from cM = 1/2 would be analogous to

introducing bulk masses in the flat case [29]. To obtain a predictive theory of electroweak symmetry

breaking with a single Higgs boson, the Higgs must propagate in the bulk. If we had instead placed

the Higgs boson on the Planck brane, then 4D supersymmetry on that brane would have prevented

it from generating down-type masses. If we had placed it on the non-supersymmetric TeV brane,

the quartic coupling would be arbitrary and there would be no prediction for the physical Higgs

boson mass. A bulk Higgs boson, however, is able to generate up-type masses at the y = 0 brane

and all masses at the y = πR brane, and to a large extent radiative corrections are controlled by

the unbroken bulk supersymmetry.

The bulk mass for the Higgs hypermultiplet, c, is still free as is the Higgs boson brane mass

7We could instead choose the Planck brane to be a type II defect, if we localize the Higgs fields to the TeV
brane. Such a construction can lead to theories where there is a little hierarchy between the electroweak and new
physics scales [28].

19
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φ(+,+) ψ(+,−)ψ(−,+) φ(−,−)

Figure 1: Mass spectrum for matter-like fields (left) with cM = 1/2 and for Higgs-like fields (right)
with c = 1/2 and r′ = −1.

term at the TeV brane L = r′(φ1∗φ1)2kδ(y − πR), where φ1 is the first component of a complex

SU(2)R doublet and gauge indices are contracted. These two parameters in turn determine the

profile of the Higgs boson KK modes in the bulk, and the tree-level mass of the Higgs boson KK

modes. In particular the lightest mode mass is approximately given by:

mtree ≃ 2

√

(c2 − 1/4)
3/2− r′ − c

5/2− r′ + c

(

t

k

)c−1/2

t, (52)

for (t/k)c−1/2 ≪ 1, where t = e−kπRk is the scale of physics at the y = πR brane. An important

result is that for c > 1/2 the tree-level mass is much smaller than the typical KK mass scale t

so that the full Higgs mass parameter becomes only weakly sensitive to r′. This is because the

lowest level wavefunction is strongly peaked around the y = 0 brane. Therefore, while we have no

knowledge of the TeV brane parameters (and radiative corrections to some of these parameters

are even power divergent), the low energy physics is largely insensitive to their values.

Since the tree level mass of the Higgs boson rapidly becomes small for c > 1/2, electroweak

symmetry breaking is triggered radiatively via the top Yukawa coupling, which we assume to

be located dominantly on the Planck brane. As discussed in section 3.2, the supercurrent is

conserved locally in the bulk, so radiative effects must respect supersymmetry there. Therefore,

supersymmetry guarantees that the bulk Higgs mass is not renormalized. Thus, as in models of

boundary condition supersymmetry breaking on flat extra dimension, we expect corrections to the

4D Higgs boson mass to be finite, except for the contribution from the y = πR brane, which we

have argued is small. Therefore, by taking r′ to be the renormalized brane mass we are able to

calculate the physical Higgs mass in terms of c and r′. We have computed radiative corrections

from the top quark Yukawa coupling to the Higgs boson effective potential. After minimizing this

effective potential, the mass scale of the KK modes is determined from MZ , and the resulting
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Figure 2: Physical Higgs boson mass in GeV for r′ = −1 (dash-dot-dot), r′ = 0 (dashed) and
r′ = 0.5 (solid).

prediction for the Higgs boson mass is shown in Fig. 2, for a range of c and for three values

of r′. The insensitivity to r′ as c increases above 1/2 is striking, but not unexpected as in this

region the tree-level mass effectively vanishes. For the same reason, the physical Higgs boson mass

becomes constant for large c at about 100 GeV. One might worry that direct searches rule out

a single Higgs boson with mass less than 115 GeV, and the model requires a large degree of fine

tuning to reach such a mass. However, since r′ is not the only TeV brane operator that affects

the Higgs mass, we expect that there are O(15%) corrections to our calculation. For example,

there can be additional quartic interactions, top Yukawa couplings and terms involving the F -

fields of the matter multiplets, on the TeV brane. Although all of these terms are suppressed by

the wavefunction overlaps of the various fields with the TeV brane and thus introduce only small

corrections, they can give non-negligible effects on the physical Higgs boson mass; for example,

a brane-localized quartic coupling is expected to introduce a <∼ 15% correction in the physical

Higgs mass in the limit of strong coupling. Therefore, taking note of these possible corrections,

the model is not ruled out for a reasonably wide range of parameter space. Notice that for a given

r′, electroweak symmetry is not broken for all c. Below a certain c, the radiative corrections are

unable to overcome the positive tree level mass squared and electroweak symmetry breaking does

not occur. Thus the curves in Fig. 2 end at these points.

Taking c > 1/2 also leads to light Higgsinos. The lightest Higgsino mass is approximately

mh̃ ≃ 2
√

c2 − 1/4

(

t

k

)c−1/2

t. (53)
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Figure 3: Lightest neutralino (solid) and lightest chargino (dashed) masses in GeV for r′ = −1
and z = −0.75.

Notice that no brane mass term can be written for the Higgsinos because h̃1 vanishes at y = πR.

The masses of the lightest neutralino and lightest chargino therefore place a bound on c. However,

this bound is weak because it depends on the size of the brane-localized kinetic term for h̃2

S4 = −
∫

d4x(k/t)−1Z
¯̃
h2∂µγ̂

µh̃2 (ηh̃2(πR))2 , (54)

where indices are raised and lowered with ηµν and γ̂µ are the four dimensional Dirac gamma

matrices. ηh̃2(y) is the wavefunction of the lightest right-handed Higgsino. If we consider the

dimensionless combination z = Z(k/t)−1 (ηh̃2(πR))2 we find that the four dimensional kinetic

term for the lightest h̃2 has a coefficient ≃ 1 + z and that going to canonical normalization the

lightest Higgsino mass is

mcanonical ≃
mh̃√
1 + z

. (55)

Notice that the strong peaking of the wavefunction enhances the effect due to the brane kinetic

term, so that a correction to the Higgsino mass of order unity is expected. As an example, we

show in Fig. 3 the lightest chargino and neutralino for the case that z = −0.75 and r′ = −1,

though there is only weak sensitivity to r′. In this case, the chargino mass is not ruled out by

direct searches for c <∼ 0.55.

By introducing a type II supersymmetry breaking defect on a warped background, we are able

to construct a predictive theory of electroweak symmetry breaking with one Higgs doublet. The

theory requires a moderate peaking of the Higgs boson on the y = 0 brane, which could be the

origin of the mt/mb ratio. While the Higgs boson is expected to be close to its experimental limit
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Matter Higgs
F++(1, 2)− 1

2

F−+(3̄, 1) 1

3

H++(1, 2) 1

2

H−+(3, 1)− 1

3

F ′ F c
−−(1, 2) 1

2

F c
+−(3, 1)− 1

3

H Hc
−−(1, 2)− 1

2

Hc
+−(3̄, 1) 1

3

F−+(1, 2)− 1

2

F++(3̄, 1) 1

3

H++(1, 2)− 1

2

H−+(3̄, 1) 1

3

F F c
+−(1, 2) 1

2

F c
−−(3, 1)− 1

3

H̄ Hc
−−(1, 2) 1

2

Hc
+−(3, 1)− 1

3

Table 1: Superfields from matter and Higgs fields are listed by their quantum numbers and parity
assignments before the supersymmetry breaking twist. The quantum numbers represent those
under SU(3)C × SU(2)L × U(1)Y . The far left column indicates what hypermultiplet the fields
are contained in. F and F ′ are 5̄’s of matter while H and H̄ are Higgs multiplets.

of 115 GeV, a precise prediction is not possible because of the degree of peaking of the Higgs

boson wavefunction and the supersymmetry breaking interactions on the TeV brane. The lightest

chargino and neutralino are also close to their experimental bounds.

4.2 Twisted warped grand unified theory

While the theory just described has logarithmic running of gauge couplings up to the mass scale

of the Planck brane, it is not a theory of gauge coupling unification, since nothing in the theory

requires the bulk gauge couplings to be unified. In order to construct such a theory we must

consider a model in which the bulk Lagrangian is symmetric under some grand unified group.

Here we consider an SU(5) supersymmetric gauge theory on a slice of AdS5. We take the warped

supersymmetric grand unified theory of Ref. [15], with all matter and Higgs in the bulk, and

break the SU(5) symmetry by boundary conditions imposed at the Planck brane. Each generation

contains F : {F (5̄), F c(5)}+F ′ : {F ′(5̄), F ′c(5)} and T : {T (10), T c(1̄0)}+T ′ : {T ′(10), T ′c(1̄0)}
where Φ(R) represents a chiral supermultiplet in the R representation of SU(5). There are, in

addition, two Higgs hypermultiplets H : {H(5), Hc(5̄)} and H̄ : {H̄(5̄), H̄c(5)}. In this model,

the boundary conditions are given such that each brane is a symmetry breaking defect of type I

with respect to supersymmetry. The Planck brane is additionally a symmetry breaking defect

of type I with respect to the gauge group, breaking SU(5) → SU(3)C × SU(2)L × U(1)Y . The

TeV brane respects the full SU(5) group. (The boundary conditions for some of the bulk fields

are given explicitly in Table 1.) The zero-mode particle content of the model is the same as in

the MSSM, while the KK towers consist of SU(5) symmetric particles of masses around TeV. It

was shown in [15] that, if all bulk fields carry c ≥ 1/2, only the zero modes contribute to the

differential gauge coupling running, so that the model leads to the same beta functions as in the

MSSM. Therefore, despite the drastic departure from the MSSM particle content at the TeV scale,

the theory preserves logarithmic gauge coupling unification at a high scale.

With the boundary conditions described above, both branes are defects of type I respecting
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Matter Higgs
φ+−(1, 2)− 1

2

φ−−(3̄, 1) 1

3

φ++(1, 2) 1

2

φ−+(3, 1)− 1

3

F ′ ψ++(1, 2)− 1

2

ψ−+(3̄, 1) 1

3

H ψ+−(1, 2) 1

2

ψ−−(3, 1)− 1

3

φc
−+(1, 2) 1

2

φc
++(3, 1)− 1

3

φc
−−(1, 2)− 1

2

φc
+−(3̄, 1) 1

3

ψc
−−(1, 2) 1

2

ψc
+−(3, 1)− 1

3

ψc
−+(1, 2)− 1

2

ψc
++(3̄, 1) 1

3

φ−−(1, 2)− 1

2

φ+−(3̄, 1) 1

3

φ++(1, 2)− 1

2

φ−+(3̄, 1) 1

3

F ψ−+(1, 2)− 1

2

ψ++(3̄, 1) 1

3

H̄ ψ+−(1, 2)− 1

2

ψ−−(3̄, 1) 1

3

φc
++(1, 2) 1

2

φc
−+(3, 1)− 1

3

φc
−−(1, 2) 1

2

φc
+−(3, 1)− 1

3

ψc
+−(1, 2) 1

2

ψc
−−(3, 1)− 1

3

ψc
−+(1, 2) 1

2

ψc
++(3, 1)− 1

3

Table 2: Fields from 5̄ matter and Higgs multiplets are listed by their quantum numbers and parity
assignments after the supersymmetry breaking twist. φ and φc (ψ and ψc) represent complex scalar
(Weyl fermion) fields in Φ and Φc superfields, respectively, where Φ = F, F ′, H, H̄.

the same 4D N = 1 supersymmetry, so that there exists unbroken N = 1 supersymmetry in

the low-energy 4D theory. One way of breaking this remaining supersymmetry is to consider a

supersymmetry breaking VEV located on the TeV brane. Instead, here we consider breaking the

remaining supersymmetry by modifying the boundary conditions such that the brane at y = πR

becomes a supersymmetry breaking defect of type II, as in the previous sub-section. This is

accomplished by introducing non-zero α′ parameters in Eqs. (45, 46). Without loss of generality,

we can take α′
1 = α1,2 = 0. We here choose the supersymmetry breaking parameter α′

2 = 1/2. We

also choose P ′
Higgs = −1 so that there are light Higgs scalars from the Higgs hypermultiplets.

We first consider the effect of the supersymmetry breaking twist, α′
2 6= 0, on the matter

multiplets. Here, the net effect is that the parity under y′ → −y′, Z ′, changes sign for the SU(2)R

doublet scalars. As a consequence, the MSSM sfermions no longer possess a zero mode while

their first KK modes appear at O(TeV). However, a new scalar zero mode now appears. As

shown in Tables 2 and 3, these scalars are related to the standard model fermions by the broken

generators of SU(5) and by the supersymmetry broken at the Planck brane. We will call these the

SU(5), N = 2 partners of the standard model fermions. Notice that a full generation will possess

both a fermion and a scalar with conjugate quantum numbers. Therefore, mere observation of

quantum numbers and the mass spectrum (before electroweak symmetry breaking) could mimic

the presence of an unbroken supersymmetry. However, the fermion and scalar originate from

different hypermultiplets and thus there is no supersymmetry that relates the two. For example,

the two fields will not be coupled by the gauginos. The extra bosonic fields can be made heavy

by mass terms located on the y = πR brane. In order for these fields to become sufficiently heavy

their wavefunctions must have a sizable overlap with the TeV brane. This translates into the

requirement that cmatter ≥ 1/2, in accordance with the requirement for gauge coupling unification

24



Standard Model Matter ψ(3, 2) 1

6

ψ(3̄, 1)− 2

3

ψ(3̄, 1) 1

3

ψ(1, 2)− 1

2

ψ(1, 1)1

SU(5), N = 2 Partners φc(3̄, 2)− 1

6

φc(3, 1) 2

3

φc(3, 1)− 1

3

φc(1, 2) 1

2

φc(1, 1)−1

Table 3: Matter fields which have zero modes: standard model quarks and leptons and their
SU(5), N = 2 partners.

and stability of the proton [15]. The resulting masses are naturally in the TeV region.8

In the Higgs sector, because of the change in sign of P ′
Higgs in addition to the supersymmetry

breaking twist, the Z ′ parities of the fermions change sign. As a result, the doublet Higgsino

becomes heavy. However, as in the matter sector, the SU(5), N = 2 partners of the two Higgs

bosons, a pair of color triplet fermions, now possess zero modes. Again, as in the matter sector,

these unwanted fields can be made massive via a TeV brane localized mass term: a Dirac mass for

the two colored Higgsinos. Again, to give sufficient mass for the undesired states, the wavefunction

overlaps of these states with the TeV brane must be sizable, requiring cHiggs ≥ 1/2. Note that

larger values of cHiggs, cHiggs > 1/2, have the added benefit of minimizing the influence of the

supersymmetry breaking brane on the Higgs bosons as discussed in the previous sub-section. We

expect electroweak symmetry breaking to proceed much like in the previous sub-section including

the issue of too light Higgsino doublets. To illustrate the effects of the supersymmetry breaking

boundary conditions, both the zero and non-zero modes of the 5’s and 5̄’s of the F ,F ′ matter and

Higgs fields are shown in Tables 1 and 2 both before and after the supersymmetry breaking twist.

We finally consider the gauge sector. This sector has a quite similar structure to the Higgs

sector. The boundary condition twist at y = πR, α′
2 = 1/2, acts on the SU(2)R doublets, so the Z ′

parities for the gauginos change sign. The MSSM gauginos become heavy while the SU(5), N = 2

partners of the gauge bosons are made light by the supersymmetry breaking twist. However,

these undesired fields can gain masses via a mass term on the TeV brane. In the case of the gauge

multiplets the bulk mass is required to be cgauge = 1/2 by gauge invariance, and thus the zero-

mode fermions have conformally flat wavefunctions, insuring that they have sizable wavefunction

overlaps with the TeV brane.

Now, we consider the effect of supersymmetry breaking twist, α′
2 6= 0, on the gauge coupling

unification. A theory on the truncated AdS5 space has a different description in terms of a 4D

quasi-conformal field theory [30]. In this dual 4D picture, changing the boundary conditions at

the TeV brane corresponds to changing the TeV physics, so that it can be viewed as an IR effect.

Therefore, the boundary condition breaking twist at the TeV brane is expected not to change

the differential running above the TeV scale, and the model is expected to preserve the successful

8The extra scalars can also obtain masses through radiative corrections from gaugino masses. In the case where
these masses are sufficiently large, we do not necessarily satisfy the conditions cmatter ≥ 1/2 to make these fields
heavy, and the scalar mass squareds are one-loop smaller than the supersymmetry breaking scale ∼ t2.
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prediction for sin2 θw [15]. This expectation can be confirmed by direct calculation of the beta

functions with the twists, α′
2 = 1/2 and P ′

Higgs = −1, using the formulae found in Ref. [14]. Notice,

however, that there is no energy range in which our theory mimics the MSSM particle content. If

the brane mass terms are smaller than the KK mass gap, then the first new particles to be created

will include the SU(5), N = 2 partners of the standard model particles. These include colored

Higgsinos and gauginos of the broken SU(5) generators. If the brane mass terms are larger than

the KK mass gap, then the first new particles to be created will be the first KK mode which

contains many states in addition to those of the MSSM. The model makes the same prediction

for sin2 θw as the MSSM, despite these drastic departures from the MSSM particle content at the

TeV scale.

We may also wish to maintain the feature of gauge coupling unification in the context of a

theory with one Higgs doublet. In this case, it is easiest to return to the situation before the

supersymmetry breaking twist was made. We can then imagine removing the {H̄(5̄), H̄c(5)},
which contained the H̄(1, 2)−1/2 Higgs doublet as a zero mode. This change in the zero-mode

particle content will change the beta function; we therefore also remove the {F (5̄), F c(5)} that

had contained the third generation F (3̄, 1)1/3. The sum of these two zero-mode fields contribute to

the differential running of the gauge couplings the same as a single 5̄, and therefore their removal

does not affect gauge unification. We will not worry about the missing bR at this stage; it will

reappear after we break the remaining N = 1 supersymmetry.

Now let us consider the 5’s and 5̄’s of the third generation matter and Higgs fields after breaking

supersymmetry. Notice that the SU(5), N = 2 partner of the remaining Higgs boson (i.e. the ψc
++

component of the H hypermultiplet) is a fermion with the same quantum numbers as bR. We may

identify this field as the right-handed bottom quark thereby completing the third generation. This

identification points out the fact that there no longer exists any distinction between Higgs-like

and matter-like boundary conditions. Instead, we have unified matter and Higgs in the context

of an SU(5) model: from the 5D point of view the quantum numbers and boundary conditions

for the H hypermultiplet and the two F hypermultiplets are the same. There are three potential

Higgs bosons, each one an SU(5), N = 2 partner of a right-handed down-type quark. However,

since the H hypermultiplet has the bulk mass parameter such that the zero-mode doublet scalar

is localized toward the Planck brane while the zero-mode scalars from the F hypermultiplets are

localized to the TeV brane, it is natural that only two of these scalars receive O(TeV) masses

from the y = πR brane, leaving one light Higgs doublet. This light Higgs field will develop an

electroweak breaking expectation value through radiative corrections, as in the previous models.

Therefore, we can naturally obtain the theory with logarithmic gauge coupling unification, which

effectively has only a single Higgs boson. Note that the Yukawa couplings for the up-type quarks

can be located both on the Planck and TeV branes but those for the down-type quarks (and

charged leptons) can be located only on the TeV brane. Thus we naturally understand the origin
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of the mt/mb ratio in this theory through a moderate peaking of the Higgs wavefunction toward

the Planck brane.

5 Conclusions

In this paper we have studied the properties of boundaries in higher dimensional theories that

do not respect the full symmetries of the bulk. Such defects break symmetries explicitly, but

since all the breakings are localized on boundaries, local counterterms in the bulk are restricted

in exactly the same manner as they would be in the absence of the defects. In particular, the

effects of explicit breaking are suppressed by the volume of the extra dimensions and/or small

wavefunction overlaps in the low energy 4D theories. Therefore, symmetry breaking by point

defects provides an interesting alternative to spontaneous symmetry breaking, in which we can

systematically suppress the size of explicit breaking and can use the symmetry to control radiative

corrections.

There are two different classes of symmetry breaking defects. A type I defect possesses the

maximum symmetry allowed by the boundary conditions of the fields. Put another way, if the

symmetry is made local the boundary conditions of the gauge parameters and gauge fields coincide.

The two therefore have the same KK decomposition, and there exists a gauge transformation

corresponding to each gauge field in the 4D theory. Such a theory can therefore be consistently

gauged. If a theory possesses a defect of type II, then the symmetry may not be gauged. Type II

defects arise by requiring the brane Lagrangian to be invariant under a smaller symmetry than

that allowed by the boundary conditions. In order to enforce this, one must impose additional

constraints on the symmetry transformation parameters at the boundaries. If one were to attempt

to gauge such a theory, the additional boundary conditions on the gauge parameters, as compared

to the gauge fields, would result in gauge fields without corresponding gauge transformations.

This will therefore result in inconsistencies such as states with negative norm. These results apply

to any theory in which a symmetry is broken by boundary conditions on extra dimensions.

In particular, these ideas may be applied to supersymmetry breaking on a slice of AdS5. In

this case, the Killing spinor equations result in a non-trivial constraint on the supersymmetry

transformation parameters at the boundaries of the space. If only half of the supersymmetry is

broken, reducing the four dimensional N = 2 to N = 1, then the Killing spinor condition coincides

with the conditions required by the boundary conditions of the fields, and the boundaries become

symmetry breaking defects of type I. However, if one attempts to break all of the supersymmetries,

then the Killing spinor equations do in fact constitute an additional constraint and at least one

boundary must be a type II defect. As a consequence, unlike flat space, breaking supersymmetry

by boundary conditions on a warped background is not consistent with supergravity.

Despite this difficulty, we argue that a theory with supersymmetry breaking boundary con-
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ditions may approximate a theory that is consistent with gravity. We therefore presented two

models that make use of this mechanism. First, we constructed a theory of electroweak symmetry

breaking with a single Higgs doublet: a warped version of the constrained standard model. Super-

symmetry greatly constrains the Higgs potential, while a bulk mass for the Higgs hypermultiplet

reduces the sensitivity to the dynamics of the supersymmetry breaking brane. As a result, we

have succeeded in constructing a predictive theory leading to a Higgs boson mass that may be

close to its experimental lower bound.

In our second model we constructed a theory of gauge coupling unification in which both the

grand unified group and supersymmetry are broken by boundary conditions on the same extra

dimension. While gauge coupling unification occurs as in the MSSM, the low energy particle

content may deviate drastically from that of the MSSM. Depending on the mass parameters of

the supersymmetry breaking brane, it is possible that the lowest mass gaugino may be the super

partner of the broken gauge bosons. It is also possible that the lightest Higgsinos are colored.

We have also shown that it is possible to remove the Higgs hypermultiplets from this model and

identify the Higgs boson as one of the SU(5), N = 2 partners of the right handed down-type quarks

and in this way unify the Higgs and matter in the context of an SU(5) grand unified theory.
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